Removal of Nitrate/atrazine Contamination with Zero-valent Iron-promoted Processes

نویسنده

  • C. F. Chew
چکیده

This research project is designed to study the feasibility of removing or remediating nitrate/atrazine in groundwater using iron powder treatment. Iron powder was selected because it is cheap and nontoxic. Three different types of iron powders were used in this research. They were lab grade iron powder (about 0.02 micron in size), industrial grade iron powder (about 0.5 micron in size), and rusted industrial grade iron powder (about 0.5 micron in size). In the batch studies conducted, best nitrate removal was obtained using rusted iron powder (nearly 70% removal at approximately neutral pH). However, more atrazine was removed when lab grade iron powder was used (about 75% removal). During the column studies, it was found mixing two parts of fine sand with one part of iron powder prevented plugging and improved removal efficiency. More than 98% of the atrazine were removed by lab grade iron powder with less than two days detention time. On the other hand, nitrate removals were dependent on pH. High nitrate removals were observed at low and high pHs while less than 50% removals were observed near neutral pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrate Removal from Aqueous Solutions Using Granular Activated Carbon Modified with Iron Nanoparticles (RESEARCH NOTE)

Nitrate contamination of water resources and the growing concentration of nitrate endanger human health and the environment and considering its reduction strategies from water resources is important. The aim of this study was to investigate the possibility of removal of nitrate from aqueous solutions using granular activated carbon from grape wood coated with iron nanoparticles. The results sho...

متن کامل

Degradation of Low Concentrations of Formaldehyde in Sono Catalytic Ozonation Advanced Oxidation Processes using Zero-valent Iron

The purpose of the current study is to evaluate formaldehyde degradation ratio with various methods in a batch reactor. In this work, the ozonation, sonolysis (ultrasonic), and ozone sonolysis, sono catalytic ozonation (SCO), and nano zero-valent iron catalyst processes were investigated for removal of formaldehyde. In addition, the influence of important factors such as pH (5–9), ultrasonic po...

متن کامل

حذف نیترات از آب  با استفاده از نانو ذرات آهن صفر  نشانده شده بر زئولیت

MicrosoftInternetExplorer4 Background and Objectives: Nitrate is one of the most groundwater pollutants in world. Reduction of nitrate to nitrite by microorganisms cause serious health hazards. Nitrate can be eliminated using either adsorbtion or reduction. In this study, we investigated the adsorption of nitate on zeolite and the feasibility of removal improvement using supported  zero v...

متن کامل

حذف نیترات از محیط‌های آبی توسط کربن نانوتیوب مغناطیسی شده با نانوذرات آهن صفر

Background and purpose: Nitrate is one of the most common chemical pollutants in groundwater in the world. Adsorption has been considered as an effective and efficient method of removing pollutants, particularly nitrate from aqueous solutions and so the aim of this study was to magnetization of the carbon nanotubes with zero-valent iron and using it as an adsorbent for the removal of nitrate fr...

متن کامل

Application of synthesized nanoscale zero-valent iron in the treatment of dye solution containing Basic Yellow 28

Nanoscale zero-valent iron NZVI particles were synthesized by the aqueous phase borohydride reduction method, and the synthesized NZVI particles were used for the degradation of Basic Yellow 28 BY28 dye in aqueous solution. The influence of experimental variables such as reaction time, NZVI particle dosage and pH were studied on the decolorization of BY28. Mixing an aqueous solution of 100 mg L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001